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W E I G H T E D  L p C L O S U R E  T H E O R E M S  
F O R  S P A C E S  O F  E N T I R E  F U N C T I O N S  

BY 

LOREN D. PITT* 

ABSTRACT 

For a fixed weight A(dx) on R '  and a linear space ~ C_ LP(A) of entire functions 
that is closed under difference quotients h ( . ) - - - ~ ( z -  .)  ' [ h ( z ) - h ( .  )], the 
L"(A) closure ~ of ~( is studied and characterized in terms of the norms L(z),  
(z @ C ' )  of the evaluation functionals h --~ h(z), h E ~. 

1. Introduction 

Let A(dx) be a Borel measure on the real line R 1 with finite moments 

fx"A(dx) of all orders. A classical theorem of M. Riesz (see [13] or [2]) shows 

that if the space ~ of polynomials is not dense in L2(A) then the closure ~ of 

in L2(A) contains only entire functions f(z) which satisfy 

(1.1) limsup I z I-' log If(z)l = o. 

This result of Riesz is typical of a class of theorems in the theory of one variable 

trigonometrical and polynomial approximation each of which asserts that the 

closure 9~ of a given linear space ~ of entire functions either is everything or is a 

proper subspace of entire functions which satisfy growth conditions similar to 

(1.1). One can find examples of such theorems in the work of Koosis [6], Krein 

[9], Levinson and McKean [10] and Pitt [12], and this list is far from complete. 

In this paper we investigate this general phenomenon within the setting of 

weighted L p (A) approximation. We single out the essential feature common to 

the spaces Y( which occur in the classical examples as being closed under 

difference quotients: if f ~ Yg and Im z ~ 0 then the function 

(l.2) - z)-' [ / (;)-  f(z)] #. 

We will however also treat infinite measures for which L"(A) does not contain 

the quotient (1.2) unless f(z) = 0. To avoid this difficulty we replace (1.2) with 
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the weaker condition: If f and g are in Y( and Im z ~ O  then the function 

(1.3) ~ ---> (z  - ~)- '  [ f ( z  ) g ( ( )  - f ( ~ ) g ( z  )] ~ ](. 

It develops that condition (1.3) essentially forces 9~ to assume one of three 

basic forms: 
i) ~e = LP(A); 

ii) ~e is a space of functions analytic on the upper or lower half-plane and 

similar in nature to the classical H ~ spaces; or 

iii) ~ is a space of entire functions satisfying certain growth conditions. 

When the third alternative occurs ~e exhibits a general structure similar to that 

of the Hilbert spaces of entire functions which de Branges [3] has studied. This 

structure theory, although much less complete than de Branges' theory, remains 

rich enough to be interesting and contains an analogue of the basic inclusion 

theorem ([3, p. 107]) of de Branges. 

Our methods and techniques are intimately related to those of the Bernstein 

problem [7] and [11], the classical moment problem [2] and especially those of de 

Branges' Hilbert spaces of entire functions [3]. In particular the proof of our 

Theorem 5 is entirely derivative from de Branges' work. 

A description of the basic results is given in Section 2. The core of the paper is 

in Sections 3 through 8. Section 9 describes the special structure available when 

A is discrete. Section 10 is a description of spaces of analytic functions on the 

upper half-plane. 

This work was done in large part during the academic year 1972-73 while the 

author was visiting the mathematics departments at the University of Southern 

California and at Cornell University. I thank both departments for making these 

visits possible and for the warm hospitality they showed me. Special thanks go to 

Professor M. Silverstein at Southern California for many stimulating conversa- 

tions on these problems. 

2. Prel iminaries  and s tatement  of results 

Let A(dx) be a o-finite Borel measure on R '  and for 1 =<p < ~  let LP(A) be 

the weighted L p space of measurable functions f ( x )  with norm 

II f IIg = ( f  [fl(x )l ~ h ( d x  )) < oo. 

Yg will denote a fixed linear space of entire functions f ( z )  whose restrictions to 

R 1 are contained in Lo(A) and we may consider Y( to be a subspace of LP(A). 

Associated with 9( is the set of common zeros 



96 L . D .  PITT Israel J. Math. 

: ~ = { z E C ' : h ( z ) - - O  for each h E y d } ,  

and to avoid trivialities we will assume throughout that 

(2.1) a { ~  n n '} = 0. 

Let ~ denote the closure in LP(A)of yd. The basic assumption we make on yd 

is the condition: 

(Hw) Whenever  f and g are in yd and Im z ~  0 then 

s r ~ (z - ~')- '[f(z)g(~')  - f(K)g(z)] @ ~. 

Sometimes it will be necessary to assume the stronger condition: 

(Hs) Whenever  f and g are in yd and Im z f i  0 then 

~" --> (z - sr)- '[f(z)g(~ ") - f(~)g(z)] E Yd. 

The condition Hw has two equivalent useful formulations: 

(Hw,) If z ~ ~ is non-real and f E Yd satisfies f (z)  = 0 then 

~ (z - O - ' f ( O  ~ # .  

(Hw2) If z ~ f  is non-real and f E  Yd with f ( z ) =  0 then 

~" --~ (a  - ~') (z - ~')-~ f(~') E ~ for each a E C ' .  

Replacing ~r with Yd we have two further conditions H,, and Hs~ each of which is 

equivalent to Hs. 

In discussing the closure ~ of 2{ in L"(A) there are two auxiliary functions 

which play crucial roles. They are 

(2.2) L(z)=-sup{lh(z)]: h @ yd and IIh lip =< 1}, 

and 

(2.3) L+(z)=-sup{Ih(z)l:h@Yd and I1(i + ~')-'h(~')llp_-< 1}. 

These functions will be used analogously to the comparable  functions used by 

M e r g e l y a n  in his solution of the Bernstein problem [11]. Clearly 0 -< L(z)<= 
L+(z)<= +oo and L ( z ) = 0  iff z EY{. L(z)  is the LP(A) norm of the evaluation 

functional h--~ h(z) on Yd and L+(z) is the norm of the same functional in 

LP(A+), where h + is the measure A+(dx)= l i + x I-"h(dx).  Observe that both 

L(z)  and log L(z) are subharmonic functions on C ' .  

We will make  use of the fact that all arguments can be reduced to the case that 

= O. To see this let {z,} be an enumerat ion of Lt. For z E ff  set 0 ( z ) =  k if 

each h @ Yd has a zero of order at least k at s r = z and some h E Yd has a zero of 

exact order k at ~" = z. Let k(z) be the Weierstrass product with zeros of order 
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O(z.) at z. GYL For  each h E  g{, h ( z ) k - ' ( z )  is entire and the m a p  

h ( z ) ~  h ' ( z ) ~  h ( z )  k-1(z) maps  ~ onto  a space ~ '  of entire funct ions with 

f I h (~')ff A(d~') = f [h '(~)1" A'(d~'), A'(ds r)  = I k (~)I" A(d~'). 

Moreove r ,  Y(' satisfies Hw (or H~) if ~( does and L ( z ) =  I k ( z ) ]L ' ( z ) .  

The  complex  con juga te  of z is 5. If f ( z )  is analytic the con juga te  funct ion f ( 5 )  

is deno ted  f• The  space ~ is called symmet r i c  if h E Y( implies h • E W. 

The  first three theo rems  show the re la t ionship  be tween  the s t ructure  of ~ and 

the finiteness of the functions L ( z )  and L+(z). 

THEOREM 1. Suppose ~( satisfies Hw and that L+(f l )  = + ~  for some 

fl E R 2 + = { z : I m z  >O}. Then for h @ Yf 

~ - - ~ ( ( - z )  ~h(()@ f{ for each z E R 2+ and 

-* e "~h(()E f (  for each t >= O. 

T h e o r e m  1 has the obvious  modificat ion for  fl E R 2 . Thus  if there  exist 

fl+ @ R 2+ and fl_ E R 2- with L+(/3 +) = + o~ we have  e"~Y{ C_ ~r for all t. F rom this 

we deduce  ~ = L"(A).  For  symmet r i c  Y( we have L+(/3)= L+(/3) and 

COROLLARY I. If Y( is symmetric and L § = + ~ for some non-real [3 then 

# = L 

A near  converse  to T h e o r e m  1 is given by 

THEOREM 2. Suppose Y{ satisfies Hw and that f (  ~ LP(A). Then there exists a 

non-real f i e  ~ with (/3 - ( )  '~(~ f(. If~3 E R 2+ then L ( z  ) is finite and continu- 
ous on R 2+ and log L(z  ) is locally integrable on R 2+, i.e. fB [log L(z  )ldxdy < oo 

for each bounded subset B C R 2+ 

COMMENT. If there  exist /3+ @ R 2+ and /3_ E R 2- with ( /3+-  s r)  '~(r ~ and 

(/3_ - ~') ' 9 ( ~  ~ it follows f rom T h e o r e m  2 that  L ( z )  is con t inuous  on all of C ' .  

For  symmet r i c  ~ we again have  a 

COROLLARY 2. If ~ is symmetric and f ~  LP(A) then L ( z )  is finite and 

continuous on C'. 

T h e o r e m  2 is c o m p l e m e n t e d  by 

THEOREM 3. If 9{ satisfies H~ and 0 < L(/3 ) < + ~ for some fl @ R2+ then 

L ( z )  is continuous on R 2+ and log L ( z )  is locally integrable on R 2+. 

From this we have 

COROLLARY 3. If 3{ satisfies H, and is symmetric then either f (  = LP(A) or 
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L ( z )  is finite and continuous on C'. I f  ~ = LP(A) and L ( z )  is finite then the 
measure A(dx) is discrete. 

In Section 9 we give two examples with ~e = LP(A) and L ( z )  finite. For one of 

these L+(z)<oo  for all z and for the other L+(z) =- +oo for Im z ~ 0 .  

Since L ( z )  is the norm of the evaluation functional h ~ h(z) ,  it follows in case 

L ( z )  is continuous on R 2§ that LP(A) norm convergence of a sequence {h,} in 

implies local uniform convergence of the analytic functions {h, (z)} on R 2+. Thus 

each function h ~ ~ has a unique analytic extension /~(z) for z ~ R ~§ with 

h(z )  = h(z )  for h E ~,  and such that 

(2.4) [fi(z)l<-L(z)llhllp, z ~ R  ~+. 

In case L ( z )  is continuous on C 1 then /~(z) is entire and (2.4) holds for all 

z E C 1. It is this case where L ( z )  is continuous and ~ is a closed space of entire 

functions satisfying H, which primarily interests us here, but the case with L ( z )  
continuous on R 2+ and infinite on R 2 is briefly discussed in Section 10. The 

characterization of which entire functions h(z )  are in ~ is given by 

THEOREM 4. Suppose ~ C_ LP(A) satisfies H ,  and that L ( z )  is finite and 

continuous oh C 1. Define ?7{ ~_ ~ to be that subspace of LP(A) of entire functions 
f ( z  ) for which f ( z  )L- l (z  ) is bounded on C I. For 1 < p < ~, ~e = ~{ and for p = 1, 

dim (~/~)_--- 1. 

An example with dim ( ~ c / ~ ) =  1 is given in Section 9. Further information 

about the structure of ~e is obtained in Section 7. We show that if Lr -- O and 

f@ ~ has zeros {z .}CR 2+ the Blaschke product I I (1 -  z / z , )  (1 -z /Y . . )  -~ con- 

verges and f| f ( z ) B - l ( z ) E  ~, and if g E ~ then g(z) f~l(z)  is of bounded 

type* on R 2+. Denoting the mean type of g(z) f~l (z)  on R 2§ with 

T+(g) = lira sup y -1 log I g (iy)f~l (iy)[ 
y ~ + ~  

we show that sup {T+(g): g E ~}  < + ~. 

The basic inclusion theorem of de Branges ([3, p. 107]) has the following 

analogue. Let ~ ,  and ~2 be closed symmetric subspaces of LP(A) satisfying H,. 

Set g,(z)  = sup {I h(z)[:  h E ~, ;  II h lip --< 1}, and suppose both L,(z)  and L2(z) 
are contintfous. 

* An analytic function h (z ) ,  z E R z+, is of bounded type on R 2+ if it is the ratio of two 
bounded analytic functions on R 2+. We will use elementary results about functions of bounded type 
repeatedly. An excellent introductory source for the basic material is fouad in chapter 1 of de 
Branges' book [3]. 
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THEOREM 5. If  L , ( z ) L 2 ' ( z )  is finite and zero free on C t and if there exist 

nonzero functions h i ( z ) E  9(, (i = 1,2) for which h , ( z ) h ~ ( z )  is of bounded type 

on R 2+ then either )(, C 9(2 or 9(2 C 9(~. 

COROLLARY 4. Let H satisfy H~. Then the class of all closed symmetric 

subspaces Y( of Y{ for which ~ = Q, is totally ordered. 

3. Proof of Theorem 1 

We start with the preliminary 

LEMMA 3.1. Let 9(C_ LP(A) satisfy Hw and suppose that L+(~)=  +0o for 

some non-real ~. Then 

(3.1) (/3 - s r) '9( _C 9(. 

PROOF. 9(~ ~-{h E 9(: h( [3)= 0} is the kernel of the evaluation functional 

h ~ h (/3). Because L+([3) is the norm of this functional in LP(A +) we see that if 

L+([3)= +oo then 9(e is dense in the LP(A +) closure of 9(. Thus L*([3) = +oo 

implies that for each f E )if,, 

inf{f [ f (~ ' ) -  h (~')[ e l i  + sr I-PA(d~r): h E 9(~} = 0, 

and since Im ([3) ~ 0, 

inf{f [3_(f(~')- ([3_h((~)leA(d():hG9(~}=0. 

By Hw,, ( / 3 - ( ) ' 9 ( ~  C_ ~ and thus ( [3 -  ~')- 'f(~')~ fte or, what is the same, 

([3 - ,;) '9( _c ~ .  
The next lemma is well-known in its operator  theory context and makes no use 

of the special structure of 9(. Theorem 1 is an immediate consequence of 

Lemmas 3.1 and 3.2. 

LEMMA 3.2. Let  K be a linear subspace of L p(A). I f  there is a [3 E R 2+ with 
([3 - ~) 'K  C_ K then for each z @ R 2+, 

(3.2) 

and for each t >= O, 

(z - p - ' K  c R, 

(3.3) e-"OK _C/(. 

PROOf. Let K ' = { R ( ( ) E L ~  for all k @ K ) ,  

(1/p + 1/q -- 1) denote the annihilator of K. To prove (3.2) we define for k ~ K 

and 5~ E K ~ the analytic function 
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(3.4) F(z) = f (z - ~')-'k (~')~ (~')A(d~'), z E R 2+ 

By the Hahn-Banach theorem it suffices to show F(z)- 0 for z E R 2+. The mth 
derivative of F(z) is 

F(m~(z) = ( -  l)"f (z - r (~r)~ (~')A(dr 

By assumption (/3- ~')-'KC_/( and thus (/3- sr)-"K C_/( for n >0. Since 

~ K  l we see F(")(/3)=O for m > 0  and hence F(z)=-O because F(z) is 

analytic. 

To prove (3.3) we use the facts that F(z)= 0 and 

fo i(iy - ~')-' = e '('+'~ y > 0 

to conclude that 

So 0 = i (iy - ~)- 'k (~)~ (~)A(d~) 

= fo~ e-'"k(~)~(~)A(d~)}dt, y > 0 .  

By the uniqueness theorem for Laplace transforms, fT| 0 
a.e. for t => 0. But this Fourier transform is continuous since k(ff).~(ff)A(dff) is a 

finite measure and we see 

f~  e-'~ for _->0. t 

Using the Hahn-Banach theorem again we conclude e-~'K C K for t _-> 0 and 

thus complete the proof. 

If e~'r C ~ for all t we then have 

O=--fe"~h(~)~(~)A(d~), for t ~ R ' ,  h E ~  and ~ 1 .  

By the Fourier uniqueness theorem this implies h(~')~(~')A(d~')---0. Together  

with condition (2.1) this gives ~(ff) = 0 a.e. [A]. Thus ~ l  = {0} and again by the 

Hahn-Banach theorem ~ = LP(A). 

Since Lemma 3.2 has the obvious modification for /3 E R2- we may state 

PROPOSITION 3.3. If ~g C_ LP(A) satisfies H~ and if there are points/3+ E R 2§ 
and/3 E R  ~- with L+(/3§ = +oo then 9~= L~(A). 

4. Proof of Theorem 2 

We proceed with a series of lemmas. The first is quite well-known but we 

include it for completeness. 
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LEMMA 4.1. 

that 

Let ix ( d~ ) be a finite complex signed measure on R ~ and suppose 

r ( z ) - ~  J_~ ( z -  ~) - '~(d~)  

does not vanish identically for z E R 5+. Then F(z  ) is of bounded type on R 2+ and 

IogtF(z) l  is locally integrable on R 2+. 

PROOF. It suffices to show F ( z )  is of bounded type (i.e. F ( z )  = B , ( z ) /Bz ( z )  

where Bl(z )  and B2(z) are bounded analytic functions on R 2§ since for a 

nonzero bounded function B (z) the fact that log IB(z)l  is locally integrable on 

R 2+ follows directly from the Poisson-Jensen inequality 

logIB(x + i(y + h)) I <-Y- f ~  
logIB(t  + ih )l 

=Tr (x _ t)2+ y 2 dt, y , h > O .  

To see that F ( z )  is of bounded type write t~ = p.~-/x2 + i(/.t3-/d,4) where the 

/~ are finite non-negative measures and set F , ( z ) = f ( z -  ~)-'tzj(d~). Then 

F = F ~ - F 2 +  i (F3-F4)  and it suffices to show Fj(z) has bounded type. But 

ImF/(z)=<0 for z ~ R  2§ Thus B j ( z ) = [ F j ( z ) - i ]  -~ is bounded on R 2§ and 

F / =  (1 - iBj)B;  ~ is of bounded type on R z+ 

From Lemma 3.2 and the subsequent remarks we have 

LEMMA 4.2. I f  ~ C_ LP(A) satisfies Hw and if :~ ~ LP(A ) then there exists a 

non-real 13 with 

(/3 - ~) ' ~ g  ft. 

LEMMA 4.3. Suppose ~ C LP(A) satisfies Hw and for some fl @ R 2+, 

(4.1) (/3 - ~') ' ~ g  ~. 

Then L ( z  ) is finite and continuous on R 2+ and log L ( z  ) is locally integrable on 
g 2+, 

PROOF. Let f E ~ with I1[ = 1 be chosen so that (/3 - ~')- 'f~ ~e. By the 

Hahn-Banach theorem there is a ~ (() contained in the annihilator ~g* of ~ with 

I1~ II~ = 1 (1/p + 1/q = 1) for which 

(4.2) 0 / f (/3 - if) l f(~),~ (~)A(d~)" 

Thus the analytic function 

(4.3) F(z  ) = y ( z  - K)- ' f (~)~ (~')A(d~ r) 
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is not identically zero on R 2+ and by Lemma 4.1, log IF(z)l  is locally integrable 
on R 2+. 

By condition Hw we see that 

0 - ~ f ( z  - r  g(z ) f ( r162 Im z ~  0 

for each g E g(. Setting 

G ( z  ) = f (z - ff)-'g(ff)~ (~')h(d~') (4.4) 

we have 

(4.5) f ( z ) G ( z )  = g ( z ) F ( z ) ,  

Since [I ~ [[q = 1 we have the estimate 

< 1  I a ( z ) l = y  IIg Ib, 

Together with (4.5) this gives 

[g(z)l--< y l ~  f(z) 

I m z # 0 .  

y = I m z > 0 .  

, i f z E R 2 + a n d F ( z ) ~ 0 .  

From the definition of L ( z )  we then have 

(4.6) ]F (z ) I<=L(z )<=l  ~ , if z F ( z )  @R2+ and F ( z ) ~ O .  

The three functions log [f(z)[, log y and log [ F(z)[ are each locally integrable on 

R 2+ and thus (4.6) shows that log L ( z )  is locally integrable on R 2+. 

This implies that the subharmonic function log L (z) is locally bounded above 

on R 2+. Thus L ( z )  is locally bounded on R 2§ and the family {g(z): g E ~ and 

]1 g lip <-1} is locally bounded on R 2§ and hence is locally equicontinuous on R 2+. 

It follows that 

L ( z ) = s u p { I g ( z ) [ : g E Y (  and IIg llp <_- l} 

is continuous on R 2+ and the proof is complete. 

Lemma 4.3 is easily modified to the case that for some /3 E R 2-, 

( /3-~ ' )- 'Y(7"~.  Combining Lemmas 3.2, 4.2 and 4.3 gives the following 

proposition which contains Theorem 2 as a special case. 

PROPOSITION 4.4. Suppose ~( C_ L p (A ) satisfies Hw. Then one of the following 

alternatives holds : 
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i) for each non-real  z, (z - ( ) - ' ~  C_ ~ ,  in which case f (  = L"(A) ,  

ii) (z - () ~Y( _C Y~ holds for each z ~ R 2- but for no z E R 2+, in which case 

L ( z )  is continuous on R 2+ and log L (z )  is locally integrable on R z+ and moreover 

e ~'~Y( C f (  holds for all t ~ O, 

iia) alternative (ii) holds with the roles of  R2~ and R2- interchanged, 

iii) for no non-real  z is (z - ()-JY~ C_ f(, in which case L ( z )  is continuous in 

the entire complex plane. 

PROOV. The only item needing comment is the continuity of L ( z )  in (iii). But 

we know that log L ( z )  is locally integrable and the continuity of L ( z )  follows as 

in the proof of Lemma 4.3. 

COMMENT. The occurrence of alternative (ii) above is familiar and essentially 

understood within the context of prediction theory and is briefly discussed in 

Section 10. We also mention that it is possible to have ~ = LP(A) with L ( z )  

finite and continuous. See Section 9. 

5. Proof of Theorem 3 

The proof rests on the immediate 

LEMMA 5.1. Suppose 9 ( C L e ( A )  satisfies Hs. For [ 3 E C  1 set ~ =  

{h ~ Yt~: h([3)= 0}. Then Y(~ also satisfies condition H~. l f  a and  [3 are non-real  

and neither is in ~ then (c~ - ()Y(~ = ([3 - ~)YG. 

For technical reasons it is easier to discuss L+([3) than L([3) and because of 

this we start the proof of Theorem 3 with 

LEMMA 5.2. I f  Y( C L p ( A ) satisfies Hs and  if  0 < L +([3 ) < ~ for some [3 E R 2+ 

then log L(z )  is locally integrable on R 2§ 

PROOF. If 0 <  L+([3)<~ then Y(o is not dense in the LP(A +) closure of ~.  
Thus for some f ~ 9(, 

O < i n f { f [  h ( ; D - f ( - ~ )  I ~A(d~'): h E ~/ ,  (~ - ; )  ( [ 3  - ~) 
and ([3 - ~')-'f(~') is not in the L"(A) closure of ([3 - ~ r ) - ~ .  From here on we 

imitate the proof of Lemma 4.3. We choose ~, ~ L~(A) (1/p + 1/q = 1) so that 

F ( z )  = f ( z  - ( ) - I f ( ( ) ~  Gr)A(d() does not vanisfi identically on R 2+ but such that 

(5.1) 0- - f ( [3  - ~r)-'h(~')~(~r)A(d~'), for h ~ ~ .  

By Lemma 5.1, ( [3-  ~ ' ) - ~  = ( z -  r ) - ' ~  if z ~ L r  and z is non-real. Hence 
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0 =- f ( z  - ~) ' [ f ( z )g (~ ) -  g(z)f(~)]~(~)A(d~),  z E R 2+ 

and the proof may be completed exactly as in the case of Lemma 4.3. 

PROOF OF THEOREM 3. Let 

:)'{ = {h ~ ~ :  f Ih(Ol" [ i -  ~" [Ph(d~') < ~}. 

2( is a space of entire functions satisfying H~ and for /3 E R 2+ _ ~, 

(/3 - ~ ) - ' ~  c_ ~c. 

Setting L ( z ) =  sup{ I k(z) l :  k E ~ and f l k ( C ) l p l i  - C l P a ( d O _  < - 1} and applying 

Lemma 5.2 we see that if 0 < L(/3) < ~ for some/3 E R 2§ then log/ : (z)  is locally 

integrable on R 2+. But then 

sup{l~(- -~_Zz] :hE~ ~ and flh(ff)l"l/3-,l-Pli-ffl"h(d,)<l}<=s 

Letting c = i n f { I / 3 - s  rl P l i - ~ ' l  p:s r E R ' } w e  see 

sup{Ih(z)l:h~_:~, and Ilhllp <--l}<--clz-/31IS(z). 
Now choose an h E ~ with h(/3)= 1. For each f E  ~g we can write 

f ( z  ) = f(/3 )h (z ) + ( f(z  ) - f( f l  )h (z )). 

Then f ( z ) -  f ( /3)h(z)  C= ~ and 

I I f - f ( /3 )h  lip -<- II f IIp(l + L(/3)ll h lip). 

Hence 

L(z)<= L(/3) I h(z) l  + c lz  - /31/ .:(z){1 + L(/3)l Ih lip}. 

This shows log L(z)  is locally integrable on R 2§ and completes the proof of 

Theorem 3. 

REMARKS. TO see how Corollary 3 follows note that Theorem 3 implies for 

symmetric ~ satisfying H, that either L (z) -= ~ for non-real z ~ ~ or that L (z) is 

finite and continuous. If L ( z ) = - ~  then ~ = LP(A) by Theorem 1. If L ( z )  is 

finite we know that ~ is a space of entire functions and if in addition ~ = LP(A), 

each f E  L P(A) must agree a.e. [h] with the restriction to R ~ of an entire 

function. In particular f may be chosen continuous and A must be discrete. 

6. Proof of Theorem 4 

As explained in Section 2 we may assume without loss of generality that 
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Lr - -O.  Recalling also that yd is the set of entire functions f(z)  for which 

Ilfllp<oo and f(z)L-L(z) is bounded we note: If A~_>--0 is a measure with 

f(L(x))PA,(dx) < 1 and if A2 = A+A,  then the measures A and A2 both deter- 
mine equivalent norms on ~ and both determine the same space Yd. Thus we 

may assume for the proof of Theorem 4 that A is not discrete. 

The heart of the proof is contained in 

PROPOSITION 6.1. Suppose Y( C_ L p( A ) satisfies Hw and that L ( z ) is finite and 
continuous on C ~. Fix k E yd with IIk lip <-_ 1 and ~ E ~(~ C_ Lq(A) with II~ IIq <= 1. 
Then for each h @ Y{ the entire function 

(6.1) ah (Z) -= f (z - ( ) - ' [h  (z)k (()  - k (z)h (~)]~ (~)A(d() 

is identically zero. 

PROOF. We begin by showing that A(z)=- ah(z)h-'(Z) is an entire function. 

For h, hi@ Y( we know (z - ()-~[h(z)h1(~)- h(~)h~(z)] E f(  whenever 
Im z ~ 0. Thus 

h(z) f h,(~) = f 
and if hz(z)~0, 

I m z ~ 0 ,  

ah(z)= h(z) f ~ ~ff)A(d~)- k(z) ~,~z) f ~ff)A(d~). 
Hence 

(6.2) A ( z ) =  f ~ ) ( ~ ' ) A ( d ~ r ) - ~  f ~ ~(~r)A(d~). 

That is, 

(6.3) A ( z ) = a h , ( z ) h ? ' ( z )  if I m z ~ 0 ,  h , ( z ) ~ 0 ,  h ~ 0 .  

Since as ( z )h - ' ( z )  is analytic at each point z with h ( z ) ~  0, and since we may 

assume N ~  0, (6.3) shows that A (z) is entire. To see that A (z)=-ah (z)h-'(z) 
vanishes identically we will show it is bounded. Two estimates are obvious: 

p; I 1 (6.4) (z -~)- 'k ( ( )~(~)A(d~)  <=[YI' z = x  +iy, 

{f [ }<l (6.5) sup (z - ( ) - 'h , ( f f)~(~)A(d()  "]] h, lie ---- 1 = ~-~. 
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Now for a fixed non-real z we may choose hzE ~ with llh~[[p-< 1 and 

]k(z)h~(z)[ _-<2. From (6.2)we have 

3 
(6.6) [ A (z)] _-< ~--], z=x+iy.  

If A(z) does not vanish identically then log lA(z) t  is subharmonic and (6.6) 

shows by the mean value property 

l~176  rr f fz ~,,,~, logla(z)[dxdy 

for subharmonic functions, that log lA (z)[ is bounded above. Thus IA (z)I is 

bounded and must be constant. By (6.6) this constant is zero and the proof is 

complete. 

PROOF OF THEOREM 4. Assume p > 1 and that A is not discrete. If an entire 

function k(z) vanishes on the support of A then k(z)=-O and by the Hahn- 

Banach theorem it suffices to show for k E Y[ and ~ E ~ that 

(6.7) 0 -- f k (~').~ (~')A(d~'). 

By Proposition 6.1 we have for h ~ :~ with [[ h [[p= 1, 

0 =  f ~ . q ( ~ ' ) A ( d ~ ' ) -  ~ [ ~ 9~(~r)A(d~'), 

whenever z is non-real and h ( z ) ~  0. Thus 

k(O (OA(dO=h(z) h(O 

( 6 . 8 )  , f h (~)!~ (~)A(d~). -r h(z) J 

The second term on the right vanishes since h E ~ and ~ ~ ~ .  For z = iy and 

[[h lip _-< I we have 

and thus 

ty k(sr)~(~.)A(d~) [ [k iy _ l ]~ l Iq .  (6.9) [ f i < (iy)l ][ [iy _ ~ 
iy - s r = L(iy)  

But I k(z)lL-l(z) is bounded by some constant c and since p > 1 we have q < ~. 
Applying the dominated convergence theorem to both sides of (6.9) gives 
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/_2y___ 

= O, 

and completes the proof for p > 1. 
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For p = 1 this argument fails since for general ~ ~ L = it is not true that 

[ iY -115~ -->0 as y--~oo. 
iy - ~" 

What we can conclude is that: If k E 0'{" and lira inf[k (iy)lL-~(iy) = 0 as I Y [--* oo 

then k @ )(. If dim (5~{ [ ~ )  _-> 2 there must exist two functions k~ and k2 in 9/" for 

which c e k , + f l k 2 E ~ i f f a  = f l = 0 .  Since kj(z)L ~(z)bounded f o r ] = l  and 2, 

there must exist a sequence y.--* oo for which both limits c = lim k,(iy.)L-Z(iy.) 
and d = lira k2(iy.)L ~(iy.) exist. Then cd~ 0 since neither k, nor k2 is in ~. But 

then 

(c ~k~(iy.)-d ~k2(iy.))L ~(iy.)-->0 as n--.oo 

which implies c-Jk~- d ~k2E f(  and thus dim(Y{[ 9~)_-< 1. 

7. General  structure theorems 

In this section we complement Theorem 4 by proving a number of results 

concerning functions f ( z ) E  ~. Throughout this section we will assume that 

9( _C LP(A) is closed and satisfies H ,  that L(z )  is finite and continuous on C: 

and, for simplicity's sake, that ~ : Q. 

PROPOSITION 7.1. Let h E yd be nonzero and denote the zeros of h in R2+ by 
{z,}, counting multiplicities. Then the Blaschke product 

B(z)  = I~I (1 - z/z .)(1 - z/5.)- '  
I 

converges for each z~_{2.} and h(z )B ~(z)E yd. 

PROOF. Set B . ( z ) = [ I ? ( 1 - z / z j ) ( l - z / S j ) ~ .  Then I B . ( x ) [ = l  for x E R  ~ 
and I B.(z  )l J, as n 1' for z ~ R 2+. By condition H,z, h.(z ) = h(z )B~t(z ) is in yd. 

Since Ih(x)l = l h . ( x ) l  for x E R' ,  the continuity of L(z ) impl ies  {h.(z)} is 

locally bounded. Thus for z E R z+ and z~{z .} ,  l im._~lB.(z) l  exists and is 

nonzero. It is now elementary to check (see e.g. [3, p. 20]) that this implies 

Zy. (x2+ y~) ~< ~ where z. = x. + iy.. In turn, this shows the Blaschke product 

converges for z Z {2. }. Thus h. (~')--~ h (~r)S-~(r and [ h. (r = I h (r)] for all real 

~'. Hence h. ~ hB l in L~(A) and hB ' E Yd. 
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PROPOSITION 7.2. Let f and g be in ~. If g ( z ) f - ' ( z )  is analytic in R 2+ then 

g ( z ) f - ' ( z )  is of bounded type in R 2§ 

PROOF. Assuming, as we may, that A is not discrete then the containment 

(/3 - f f ) - '~  C_ ~,  Im/3~  0, can not hold as a statement about subspaces of LP(A) 

without also holding as a statement about spaces of analytic functions. Since 

only contains entire functions it is clear that (/3 - ~') lf(~.)fE ~g if f ( r )  is entire 

and f ( /3)~O. Thus we can find a ~ E ~ l  for which F ( z ) =  

f (z - ~')-~f(~')~ (~')A(d~') does not vanish identically on R 2+. Just as in the proof 

of Lemma 4.3 we have 

where 

g ( z ) f - ' ( z ) =  G(z )F- ' ( z ) ,  Im z  > 0 ,  

G ( z )  = f (z  - O-'g(O~(Oa(dC). 

Since G(z)F-~(z)  is of bounded type on R 2§ the result follows. 

Proposition 7.1 and 7.2 can be used to give a useful modification of Theorem 4. 

THEOREM 4'. Let h § E YC be zero free in R 2+ and h ~ Y~ be zero free in R 2-. 

(Such functions exist by Proposition 7.1.) Define the space ~[ of all entire functions 

k ( z ) E  LP(A) for which 

k(z)h+'(z)  is of bounded type on R 2+ and 

(7.1) 
k ( z ) h - ' ( z )  is of bounded type on R ~+ and 

(7.2) lim sup I k ( iy)lL- '( iy)  < oo. 

Then for p > 1, Y( = ~ and for p = 1, dim (Y{I Y() < 1. 

PROOF. The proof of Theorem 4 works here except that we must show under 

these conditions that the function 

ah(z ) = f (z - ~)-l[h(z ) k ( ~ ) -  k(z  )h(~)]~(~)A(d~) 

is identically zero for each k E Y{, h E ~ and ~ E ~ l .  To see this, we may 

prove, as in Proposition 6.1, that as(z )h - ' ( z )  is entire and that (6.2) holds for 

each nonzero h~ E ~. Setting hi = h+, (6.2) shows that ah(z)h-~(z) is of bounded 

type on R 2+. Similarly setting h~ = h_ shows ah(z)h-~(z) is of bounded type on 

R 2-. For z = iy we deduce from (6.2) and (7.2) that 

(7.3) I ah(iy)l Ih-~(iy) l=O(lyl-~) ,  I y I--->oo. 
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By a theorem of Krein ([8] or [3, p. 38]) we may conclude that ah �9 h - '  is of 

minimal exponential type. The Paley-Wiener theorem and (7.3) then show 

a , ( z ) h  Z(z)=-O and the proof is complete. 

Let h+ and h_ be as in Theorem 4. For g E 9~ denote the mean type of 

g ( z ) h ; ' ( z )  on R 2+ by 

(7.4) 
1 

T+(g) = lira s+up Y log [g(iy)h:~(iy)l, 

and the mean type of g ( z ) h - ' ( z )  on R 2- by 

(7.5) 

Also define 

PROPOSITION 7.3. 

l loglg( iy)hS'( iy) l .  T_(g) = limy_SUp~ Y 

T+ = sup{T+(g): g E 9g}, 

T = sup{T (g): g @ ~}. 

and 

where 

and 

As in the proof of Proposition 7.2 we can choose a ~ E ~ 1  such 

g ( z ) h : ' ( z ) =  G ( z ) H 2 ' ( z )  for z ~ R 2+, 

G ( z )  = f (z  - ~) 'g(r162162 

H+(z) = f (z - ()-~h+(~')~ (()A(d~') 

and h+(z) does not vanish identically on R 2+. The mean type of G(z )H2~(z )  is 

given by (see e.g. [3, p. 26]) 

f; T. (g )  = lim 2 1 log iG(re,O)H2~(re,O)ldO" 
r ~  77" F 

The mean types of G ( z )  and h+(z) on R 2+ are given by 

PROOF OF a), 

that for g E Y{ 

a) Both T+ and T_ are finite. 

b) I f  g E LP(A) is entire then sufficient conditions that g E ~( are that both gh T ~ 

is of bounded type on R 2+ and T+(g)< T.,  and gh- '  is of bounded type on R 2- 

and T_(g) < T_. 
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f~  r+(G) = lim 2__ 1_ log lG(re,O)ld 0 

1 
= lira sup log G (iy) 

~ 0 .  

s 1 1 loglS+(re,O)ldO r~(H§ = lim,_~ ~ r , 

Thus 
r+(g) = r + ( G ) -  r+(H+) 

_-< - ~ ' + ( H + )  < ~ .  

Similarly T ( g ) <  - r  ( H _ ) < %  thus completing the proof of a). 

PROOF OF b). Since T+(g ) > T+ we can find an h E Yg that is zero free on R > 

with T+(g)< T§ Then 

l i m s u p l g ( i y ) h - ' ( i y ) l = O  and l imsup lg ( iy )L  ' ( i y ) ] - 0 .  y ~  y ~  

Similarly we can show lira supy__~ I g( iy)L- ' ( iy)]  = 0 and by Theorem 4', g ~ Y(. 

REMARK. Assuming p > l or that Y / ' = ~ w h e n p = l  it is easy to show that 

for each z0 there is a unique function h (z )  = h(zo, z ) E  ~ with IIh I[p= 1 and 

}1 h (zo)]] = L (zo). If z(, is real it can be shown that h (z)  has only simple real zeros 

{x,} and that T . ( h ) =  T+ and T_(h)= T_. Associated with h we can define a 

subspace Yt' of Y~ spanned by the functions 

h o = h  and h , ( z ) = ( Z o - Z ) ( X ~ - Z ) - ' h ( z ) .  

~ '  satisfies Hs and for p = 2 it follows from de Branges' work ([3, p. 55]) that 

d i m ( ~  I ~")  < 1. It would be useful and interesting if this is true for p ~  2 but we 

have not been able to prove it. 

8. Proof of Theorem 5 

Y(1 and YG are closed symmetric subspaces of LP(A) each satisfying Hs. Both 

L d z )  and L2(z) are finite and continuous and LIL; '  is assumed to be continuous 

and zero free. Without loss of generality we may also suppose that :~, = ~2 = ~ .  

Further it is assumed that there are nonzero functions h, E Y(, with h , ( z )h~ ' ( z )  

of bounded type on R >. By Propositions 7.1 and 7.2 it is clear that for any pair 
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of functions hz E 2(, and h2 E 2(2, if hlh21 is analytic o n  R 2+ then it is of bounded  

type. Because 2(, and Y~2 are symmetr ic  the same s ta tement  holds for R > 

Now fix a function h + E  Y(, that is zero free on R 2+ and set h _ ( z ) =  

h~(z)@ Y(,. For  g @ Y(~ tO ~2 the formulas (7.4) and (7.5) for the mean type 

T+(g) make sense. Because Y(, and 2(2 are symmetric ,  

sup{T+(g):gC2(,}=sup{T(g):gE~,} ,  i =  1,2. 

We define T, = sup {T+(g): g ~ 2(,} and T2 = sup {T. (g )  = g E ~2}. From Prop- 

osition 7.3 we see that T, < T2 implies Y(, C 2(2 and that 7'2 < T~ implies 2(2 C 2(,. 

We now consider  the case T, = ~ .  For each h E 2(,, k E Y(2 and ~,  (E 2({- with 

II k II. -- 1 and II ~,  [I. < 1 we define 

a(z ) = f (z - ()-'[h(z ) k ( ( ) -  k(z) h ( ( ) ] ~ , ( ( ) A ( d ( ) .  

Just as in the proof  of Proposi t ion 6.1 we have for each nonzero  h, @ 2(, that 

a(z)= ~ , (~ )A(d( )  h~(z) ~ ( ( ) A ( d ~ ) ,  I m z r  (8.1) h(z) 

Then (8.1) shows that a(z)h ~(z) is entire and of bounded  type on both R 2+ and 

R 2- . Since T~ = 7'.. it follows from (8.1) that . the mean type of a(z)h-'(z) in each 

of the half-planes R 2+ and R > is nonposit ive.  Again by Krein 's  t heorem it 

follows that a(z)h I(z) is of minimal exponent ia l  type. Lastly, we see that (8.1) 

implies 

(8.2) I a (z)  
h- l <1 

= ~ 7  {1 + L2(z)LT'(z)}. 

Similarly for  k E o~2, h E ~ ,  and ~ 2 ~  ~ )  with I[h lip _-< 1 and [[~2[[, =< 1 we 

define 

b (z)  = f (z - ~')-'[k (z )h  (s r) - h (z )k  (~')l~2(~')a(d~'). 

Proceeding as above  we find b(z)k '(z) is an entire function of minimal 

exponent ia l  type and satisfies 

k(z) =~y-] {1 + L,(z)Lj'(z)}. 

Call A ( z ) = a ( z ) h  ~(z) and B(z )=b(z )k  ~(z). By (8.2) and (8.3) we have 

(8.4) min {t A (z)l ,  I B (z)l} =< 21Y [ '. 

But by using a method  of Car leman [4], de Branges has shown ([3, p. 107]) that if 
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two entire functions A (z) and B(z)  of minimal exponential type satisfy (8.4) 

then one of them is zero. 

Thus we may suppose a(z)=-O for each h @~1, k E ~ 2  and ~ , ~  ~g~. If 

~21~ ~z there must exist a k E ~2 with kff  ~ . .  Since a ( z ) -=0 ,  we have 

iy - r h(iy) f - h �9 (8.5) ) 

Because k E  ~1 we may choose ~, with 

0 r  k(()~l(~')A(d~')= hm ( .  k(~')~,(~')A(d~'). 

But 

o =  f h(~r)o~,(~')A(d~) = lim f ~ h(~')~,(~')A.(d~') 
ryr~  iy - ~" 

and by (8.5) we see that 

Thus 

lim h---~-) I = 0. 
dyl~ k(iy)  

lim h(iy)L~'(iy) = 0 for each h E ~, .  

By Theorem 4', ~ C ~ .  

9.  D i s c r e t e  m e a s u r e s  

When A is discrete and ~ =  LP(A) it is possible to obtain an explicit 

representation for L(z). The formulas obtained are intimately related to 

classical results on the cardinal series in interpolatory function theory [15]. These 

formulas enable us to give an example which shows that for p = 1 the alternative 

dim (Y{/f()= 1 in Theorem 4 can occur and to give other examples with 

L ( z ) < ~  but L+(z)=- + ~ .  

Let A be supported on the discrete set {x,} and let m. = A{x,} > ~. Assume 

~, = L P(A) and that L(z)<oc for all z. Then for each h there is a unique 

function k , ( z )E  ~( with k , (x , , )=  0 for n r  and k,(x,)= (m,) -~', (a = 1/p). 
The set {k,} form a basis for g = LP(A) with Ilk, lip = 1. For any finite sum 

(9.1) f (z)  = Z a.k.(z), 

we have 
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(9.2) II f = y, I a.  lP < ~ .  

Thus if (a.} is any sequence satisfying (9.2) the inequality If(z)l =< L(z)llfl l .  and 

the fact that L ( z )  is continuous show that the series (9.1) is locally uniformly 

convergent. Hence (9.1) and (9.2) establish a linear isometry between ~f and the 

space little I p. By the duality of the spaces l" and l q (p- '  + q- '  = 1) it follows that 

the norm L ( z )  of the linear functional f - - -*f (z)  is given by 

(9.3) 

Setting 

q l/q ~ } ~'(E. Ik~(z ) l )  , if p 1 
L ( z ) =  [ sup. [k . (z ) l ,  if p = 1. 

h (z)  = (z - xo)k,,(z) 

we observe h ( x . ) = 0  for each n. From the two facts that L ( z ) < ~  and 

9( = LP(A) it easily follows tllat each of the points x. is a simple zero of h(z ) .  
Thus (~ ' -  x.) Zh(~')E ~( and we find. 

k . (z)  = [m'~h'(x . )(z  - x . ) ]  ' h (z ) ,  a = lip. 

By (9.1) we conclude that each f @ Yg has the absolutely convergent expansion 

) a h ' ( x . ) ( z  - 

and that 

1 
(9.4) L ( z ) = s u p  m . h ' ( x . ) [ z - x . I ] h ( z ) [  for p = l ,  

and 

(9.5) L " ( z ) = ~ ] m : h ' ( x . ) ( z - x . ) l  qlh(z) l"  for p > l .  
n 

Thus L ( z )  is finite and continuous iff L ( i ) < ~  and we have the 

CRITERION. L ( Z ) < ~  for all z iff 

m~-q 
(9.6) ~ [h,(x-~-~-_ x,)[q < ~ for p > l ,  

and 

(9.7) 1 
sup. ] m . h , ( x . ) ( i _ x . ) l  ~ ~ for p = l .  
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The  construct ion leading to (9.6) and (9.7) is also easily reversible.  Star t ing 

with a nonzero  entire function h (z )  that  has a s imple zero at each of the real 

points  {x.} we let h be a discrete  measu re  concen t ra ted  on the set {x.} with 

m.  = A{x.} > 0  for each n. Sett ing ~ equal  to the l inear manifold  of l inear 

combina t ions  of the funct ions 

h.(~) = (~ - x.)-'h(~), 

we obse rve  N is dense in LP(A). The  identi ty 

(~ - z )-l{h.(~)h,.(z ) -  h,.(~)h.(z )} = h,,(z ) (z - x, . ) - l [h .  (s r)  - h,,, (st)] 

shows that  N satisfies Hs. The  equat ions  (9.4) and (9.5) follow as be fo re  and the 

cri ter ion enables  one  to de t e rmine  if L(z)=- +oo or if L ( z ) < o o .  

EXAMPLES. Let  h(x) = 7r-' sin(zrx).  Then  x. = n and h'(n) = ( -  1)". Fix a 

real 3  ̀ and set m.  = [i - n 1'. Then  the cri terion reduces  in this case to: 

L ( z ) < c r  for  a l l p > l  iff 3 , > - 1  

L ( z ) < ~  f o r p = l  i f f 3 ` _ - > - l .  

In this case the measu re  A + is also discrete with A+(n) = m+, = [i - n p - " .  We  see 

that  for p > 1 a necessary  and sufficient condit ion that  L(z )< ~ but  L+(z)=-oo 
for  zfE{x,} is that  3  ̀ satisfy - 1 < 3 `  _ -<p -1 .  

This example  can also be  easily modif ied to show that  the a l te rnat ive  

dim ( Y { / ~ ) =  1 in T h e o r e m  4 can occur  when p = 1. To  see this s tart  with the 

above  example  with m,  = [i - n [ -1 and p = 1. Then  L(z) < ~ is cont inuous.  We  

now obse rve  that  if A,(dx)  is any finite measure  for  which fL(x)Al(dx)  -< 1 then 

the two measures  h ( d x )  and A(dx)= A ( d x ) +  A,(dx)  de t e rmine  equiva len t  L '  

no rms  on the space Y( for  wh ich /Z(z ) - - -  sup {h(z) :  h E Y( and f[h(x)[TX(dx)< 
1} satisfies 1/2 L(z)<= f~(z)<-L(z). A glance at (9.4) now shows that  L(z)>-_ 
7r -1 Isin(zrz)[  and hence sin(Trz)E:f{ where  ~ = X  consists of all ent i re  

funct ions h E LI(A)  for  which h(z)L-l(z)  is bounded .  If A1 is not concen t ra t ed  

on the integers we see d im(J{ /YO => 1 since s in (Trz )E  ~(, and by T h e o r e m  4, 

dim ( ~ / ~ )  = 1. 

COMMENT. When  p -- 2 and L(z) < ~ de Branges '  work  ([3, p. 55]) shows the 

existence of a discrete measure  v(dx) for which 

f [ h (x)rA(dx) -~ f [ h (x)[2 v (dx) for each h E Y( 

and for  which ~ = L2(v). Thus  ~ and L(z) can always be descr ibed within the 
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present context. This possibility does not exist when p ~  2 because the LP(A) 

norms [[ h lip for h E ~ usually determine A. 

For an example we take the simple case with ~ consisting of all linear 

polynomials and A(dx) a finite measure with compact support. If p is not an 

integer and h = 1 + ax then for sufficiently small real a 

f 
This shows A is determined by the norms l[ h lip since these norms determine the 

moments fx~A(dx) and A has compact support. When p is an odd integer the 

above argument fails but the conclusion holds for other reasons. When p = 2n is 

an even integer the norms ]l h lip do not, in general, determine A. 

10. Spaces of analytic functions o n  R 2§ 

In Proposition 4.4 we observed the possibility that (/3 - ~.)-1~ _C ~ can hold 

for each/3 E R 2 but for no/3 E R 2.. This situation corresponds to a special case 

of the invariant subspace theory as described e.g. in Helson's book [5] or 

Srinivasan and Wang's article [14]. Here we will briefly discuss this correspon- 

dence starting from a slightly more general setting than that used in our earlier 

sections. 

The following assumptions will be made throughout this section. Y( is a space 

of analytic functions h(z) defined on R 2. that have boundary values h(x) in the 

sense that 

(10.1a) 

and 

(lO.lb) 

lim h(x + iy) = h(x)  exist a.e. [A], 
y 1o  

h(x)E LP(A) for each h E ~.  

The condition A(Y 71 R ') = 0 will be replaced with 

(10.2) IffB Ih(x)[PA(dx)=OforeachhE~,thenA(B)=O. 

We also assume that condition H~ holds for each z E R2+ and that 

(10.3) (/3 - ~ ' ) - '~  C_ ~e for each/3 E R 2- 

Defining L ( z )  for z ~ R 2+ as before we can easily modify the proofs in 

Sections 3 and 4 to give 
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LEMMA 10.1. For each t >= O, e " ~  C ~r I f  f ( ~  L" (A) then L (z )  is continuous 
on R 2+ and log L (z )  is locally integrable on R 2+. 

Let A ( d x ) =  a s ( d x ) +  Ao (x)dx be the Lebesgue decomposition of A into a 

singular part At and an absolutely continuous part Aa(X)dX. The role of the 

singular part may be understood in terms of the next three lemmas. 

LEMMA 10.2. If  f ( ~  LP(A) then Aa(sr)>0 a.e. [d~']. 

PROOF. If ~ LP(A) it follows from (10.2) that there exists an h E ~ and a 

E Wl so that the measure p, (d~') = h (~')~ (()A(ds r) is not zero. But for t _-> 0 we 

have e"Ch E f (  and thus 0 = f e"~/z (d~') for t _-> 0. By the F. and M. Riesz theorem 

/z has the form /z(d~ r) = f(sr)d~ " where If(~')[ > 0  a.e. [d~']. Thus A~(~') > 0 a.e. 

[d~']. 

LEMMA 10.3. I f  f ( ~  LP(A) and W~ = f3 { e " ~ :  t => 0} then 

= {f L P(a): II f liP" = f I 

Thus ~ is naturally identified with L"(A,).  

PROOF. For each real t, e " ~ C _  W~C_ Y(. Thus if ~t E ~•  is nonzero and 

k E ~ we see 0 ~ f e"Ck (~')~ (,~)a(d~'). By Fourier uniqueness, 

k (sr)~ (~')A(d~')~ 0. But by the proof of Lemma 1~2, ]~ (~')]A(dff)~ dff. Hence 

k(~r) = 0 a.e. [d~'] and k E LP(A~) which shows ~ C  LP(A~). 

On the other hand if k ~ L"(A,) and @ E W ~ then 0 = f k ( x ) ~ ( x ) A ( d x ) .  Thus 

{Lp(A~)+ ~e}, = ~ .  By the Hahn-Banach theorem L"(A,)C ~? and L~(A,) = 

f3 {e";~:  t > 0} = ~ .  

If ~ L~(A) then L ( z )  is continuous on R 2§ and we know that corresponding 

to each h ( x ) ~  ~e there is a unique analytic function /~(z) defined on R ~§ 

satisfying h ( z ) =  h(z )  for h E ~ and 

(10.4) I/~(z) I --< II h II, L(z ) .  

LEMMA 10.4. I f  k ~ YG = LP(A,) then I~(z)==-O for z E R 2+ 

PROOF. Choose h E Yg and ~ E Y(" so that f ( z  - ~')-'h(~')~(~')A(d~') is not 

identically zero on R 2+. By condition Hw, 

(10.5) h ( z ) f ( z  - sr)-'k(~')~(~')A(d~ ") = k ( z ) f ( z  - ~')-'h(~r)~(sr)A(dsr). 

But k(~')= 0 a.e. [d~] and ~ (~')A(d~ r) is absolutely continuous. The left side of 

(10.5) thus vanishes identically and /~(z)-= 0 for z @ R 2+. 
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An interesting consequence of Lemma 10.4 is that if ~ L~(A) then 

(10.6) L(z)=sup{lh(z)l:h ~9(  and fJh(~)lPAo(()d~<= 1}. 

We now describe the absolutely continuous case when a~--=0. Assuming 

~ LP(A) then starting with a nonzero h E 9( we may proceed exactly as in 

Section 7 and form a convergent Blaschke product B(z) containing the zeros of 

h. Setting h~(z) = h(z)B '(z) we can show that h~E 9(and  that for each k @ ~, 

l~(z)h~'(z)=k(z)B(z)h ~(z) is of bounded type on R 2§ The map 

k ( z ) ~  h; '(z)k(z) is an isometry of 9( onto the space 9(, ~ h~'(z)9( C_ L~(A,), 
where A~(x)= hg(x)A(x). 9(, satisfies all the assumptions made on 9( and in 

particular, e"~9(, C ft, and ~ , / L P ( A , ) .  By a theorem of Akhiezer [1] it follows 

that l o g A , ( x ) ( l + x 2 )  ~ is Lebesgue summable. It follows that A,(x) can be 

written in the form A,(x)=  [O(x)[  ~ where O(z) is  an outer function in the 

Hardy space H p of analytic functions on R 2+. The map k(z)---> O(z)h;~(z)k(z) 
is an isometry of 9( _C LP(A) into a subspace 9(.. = O(z)h/ (z )9(  of L~(dx). 
Moreover  ~2 ~ LP(dx) and e"~9(2 C_ ~ for t => 0. It follows easily from the work 

of Srinivasan and Wang [14] that ~_~ = O(x)h ~'(x)~ has the form 9(. = ],(x)H ~, 
where Ij,(x)[ = 1 a.e. [dx]. Finally since ~2 only contains analytic functions of 

bounded type on R ~+ we see ],(x) must have the form j, = j2j3' where j2 and j3 

are both inner functions and /'~ is zero free on R 2.. Thus 9~= 

0 '(z)h~(z )jz(z)j3(z ) 'H". 
In the general picture the sole significance of the factor k ( z ) =  

0 ~(z)h~(z)j2(z)fi(z) ~ is that it is an analytic function on R 2+ that has nonzero 

boundary values k(x) a.e. [dx] and l k ( x ) l "  = a ( x ) .  Thus the gerieral closed 

subspace 9( _C LP(A) which satisfies our assumptions is described by the analytic 

function k(z) with I k ( x ) l  " = A ( x )  and 9( = kHP. 

REFERENCES 

1. N. 1. Akhiezer, On a proposition of Kolmogorov and a suggestion of Krein, Dokl. Akad. Nauk. 
SSSR 50 0945), 35-39 (in Russian). 

2. N. I. Akhiezer, The Classical Moment Problem, Hafner, New York, 1965 (translated from 
Russian). 

3. L. de Branges, Hilbert Spaces of Entire Functions, Prentice-Hall, Englewood Cliffs, N. J., 
1968. 

4. T. Carleman, Sur une indgalit~ difft;rentielle dans la th~orie des fonctions analytiques, C. R. 
Acad. Sci. Paris 196 (1933), 995-997. 

5. H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964. 
6. P. Koosis, Sur l'approximation pond~r(e par des polynomes, Ann. Sci. Ecole Norm. Sup. 88 

(1964), 387-408. 
7. P. Koosis, Weighted polynomial approximation on arithmetic progressions of intervals or points, 

Acta Math. l l 6  0966), 223-277. 



118 L . D .  PITT IsraelJ. Math. 

8. M. G. Krein, A contribution to the theory of entire functions of exponential type, Izv. Akad. 
Nauk. SSSR 11 (1947), 309-326. 

9. M. G. Krein, On a fundamental approximation problem in the theory of extrapolation and 
filtration of stationary random processes, Dokl. Akad. Nauk. SSSR 94 (1954), 13-16; Selected Transl. 
in Math. Stat. and Prob. 4 (1963), 127-132. 

10. N. Levinson and H. P. McKean, Jr., Weighted trigonometrical approximation on R ~ with 
applications to the germ field of a stationary Gaussian noise, Acta Math. 112 (1964), 99-143. 

11. S. N. Mergelyan, Weighted approximation by polynomials, Uspehi Mat. Nauk. 11 (1956), 
107-152; Amer. Math. Soc. Transl. 10 (1958), 59-106. 

12. L. D. Pitt, On problems of trigonometrical approximation from the theory of stationary 
Gaussian processes, J. Multivariate Anal. 2 (1972), 145-161. 

13. M. Riesz, Sur le problkme des moments. Troisikme note, Ark. Mat. Astr. Fyo. 17, No. 16 
(62 pp.), 1923. 

14. T. P. Srinivasan and J. K. Wang, Weak*-Dirichlet algebras, in Function Algebras, ed. F. 
Birtel, Scott-Foresman, Chicago, 1966. 

15. J. M. Whittaker, lnterpolatory Function Theory, Cambridge Tract No. 33, Cambridge, 1935. 

UNIVERSITY OF VIRGINIA 
CHARLOTTESVILLE, VA., U.S.A. 


